Fire lamp effect wall compound light using Arduino Nano & WS2812B RGB LED

,

Ws2812B Non-Waterproof 60 Pixel/1M LED : https://amzn.to/3F5bdKL

Arduino nano : https://amzn.to/3sjfEu2

Double Side Copper Prototype PCB Universal Board 6 X 8 cm : https://amzn.to/3D3hzrH

#include <FastLED.h>

#define LED_PIN     5
#define COLOR_ORDER GRB
#define CHIPSET     WS2811
#define NUM_LEDS    120

// Interfacing Arduino uno with LDR sensor

const int ledPin = 3; // digital pin 5 
const int ldrPin = A0; // analog pin 0

#define BRIGHTNESS  200
#define FRAMES_PER_SECOND 60

bool gReverseDirection = false;

CRGB leds[NUM_LEDS];

void setup() {
  Serial.begin(9600);

  pinMode(ledPin, OUTPUT); // Here LED is determined as an ouput or an indicator.

  pinMode(ldrPin, INPUT); // Here LDR sensor is determined as input.
  delay(3000); // sanity delay
  FastLED.addLeds<CHIPSET, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection( TypicalLEDStrip );
  FastLED.setBrightness( BRIGHTNESS );
  
}

void loop()
{
  int ldrStatus = analogRead(ldrPin);

  if (ldrStatus <= 400) {

  digitalWrite(ledPin, HIGH); // If LDR senses darkness led pin high that means led will glow.

 

  Serial.print("Darkness over here,turn on the LED : ");

  Serial.println(ldrStatus);
  // Add entropy to random number generator; we use a lot of it.
  // random16_add_entropy( random());

  Fire2012(); // run simulation frame
  FastLED.show(); // display this frame
  FastLED.delay(1000 / FRAMES_PER_SECOND);
 //  delay (1000);
  }

else {

digitalWrite(ledPin, LOW); // If LDR senses light led pin low that means led will stop glowing.

  

Serial.print("There is sufficeint light , turn off the LED : ");

Serial.println(ldrStatus);
  Black(); // run simulation frame
  FastLED.show(); // display this frame
  FastLED.delay(1000 / FRAMES_PER_SECOND);


}

}

// Fire2012 by Mark Kriegsman, July 2012
// as part of "Five Elements" shown here: http://youtu.be/knWiGsmgycY
//// 
// This basic one-dimensional 'fire' simulation works roughly as follows:
// There's a underlying array of 'heat' cells, that model the temperature
// at each point along the line.  Every cycle through the simulation, 
// four steps are performed:
//  1) All cells cool down a little bit, losing heat to the air
//  2) The heat from each cell drifts 'up' and diffuses a little
//  3) Sometimes randomly new 'sparks' of heat are added at the bottom
//  4) The heat from each cell is rendered as a color into the leds array
//     The heat-to-color mapping uses a black-body radiation approximation.
//
// Temperature is in arbitrary units from 0 (cold black) to 255 (white hot).
//
// This simulation scales it self a bit depending on NUM_LEDS; it should look
// "OK" on anywhere from 20 to 100 LEDs without too much tweaking. 
//
// I recommend running this simulation at anywhere from 30-100 frames per second,
// meaning an interframe delay of about 10-35 milliseconds.
//
// Looks best on a high-density LED setup (60+ pixels/meter).
//
//
// There are two main parameters you can play with to control the look and
// feel of your fire: COOLING (used in step 1 above), and SPARKING (used
// in step 3 above).
//
// COOLING: How much does the air cool as it rises?
// Less cooling = taller flames.  More cooling = shorter flames.
// Default 50, suggested range 20-100 
#define COOLING  55

// SPARKING: What chance (out of 255) is there that a new spark will be lit?
// Higher chance = more roaring fire.  Lower chance = more flickery fire.
// Default 120, suggested range 50-200.
#define SPARKING 120


void Fire2012()
{
// Array of temperature readings at each simulation cell
  static uint8_t heat[NUM_LEDS];

  // Step 1.  Cool down every cell a little
    for( int i = 0; i < NUM_LEDS; i++) {
      heat[i] = qsub8( heat[i],  random8(0, ((COOLING * 10) / NUM_LEDS) + 2));
    }
  
    // Step 2.  Heat from each cell drifts 'up' and diffuses a little
    for( int k= NUM_LEDS - 1; k >= 2; k--) {
      heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3;
    }
    
    // Step 3.  Randomly ignite new 'sparks' of heat near the bottom
    if( random8() < SPARKING ) {
      int y = random8(7);
      heat[y] = qadd8( heat[y], random8(160,255) );
    }

    // Step 4.  Map from heat cells to LED colors
    for( int j = 0; j < NUM_LEDS; j++) {
      CRGB color = HeatColor( heat[j]);
      int pixelnumber;
      if( gReverseDirection ) {
        pixelnumber = (NUM_LEDS-1) - j;
      } else {
        pixelnumber = j;
      }
      leds[pixelnumber] = color;
    }
}

void Black()
{


    for (int i = 119; i >= 0; i--) {
    leds[i] = CRGB ( 0, 0, 0);
    FastLED.show();
   // FastLED.clear();
     
  }
}